Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 6: 317, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681799

RESUMO

For over two decades, the World Organisation for Animal Health (OIE) has engaged in combatting antimicrobial resistance (AMR) through a One Health approach. Monitoring of antimicrobial use (AMU) is an important source of information that together with surveillance of AMR can be used for the assessment and management of risks related to AMR. In the framework of the Global Action Plan on AMR, the OIE has built a global database on antimicrobial agents intended for use in animals, supported by the Tripartite (World Health Organization (WHO), Food and Agriculture Organization of the United Nations (FAO) and OIE) collaboration. The OIE launched its first annual data collection in 2015 and published the Report in 2016. The second Report, published in 2017, introduced a new methodology to report quantitative data in the context of relevant animal populations, and included for the first time an annual analysis of antimicrobial quantities adjusted for animal biomass on a global and regional level. A continuing annual increase of countries participating in the data collection demonstrates the countries engagement for the global development of monitoring and surveillance systems in line with OIE international standards. Where countries are not yet able to contribute their quantitative data, their reports also highlight the barriers that impede them in data collection, analysis and/or reporting. The OIE Reports show annual global and regional estimates of antimicrobial agents intended for use in animals adjusted for animal biomass, as represented by the quantitative data reported by countries to the OIE. The OIE advises caution in interpretation of estimates made in the first few years of reporting recognizing some important limitations faced by countries as they develop their monitoring systems. The OIE remains strongly committed to supporting its Members in developing robust and transparent measurement and reporting mechanisms for AMU.

2.
Vet Res ; 49(1): 64, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30060757

RESUMO

Vaccines and other alternative products can help minimize the need for antibiotics by preventing and controlling infectious diseases in animal populations, and are central to the future success of animal agriculture. To assess scientific advancements related to alternatives to antibiotics and provide actionable strategies to support their development, the United States Department of Agriculture, with support from the World Organisation for Animal Health, organized the second International Symposium on Alternatives to Antibiotics. It focused on six key areas: vaccines; microbial-derived products; non-nutritive phytochemicals; immune-related products; chemicals, enzymes, and innovative drugs; and regulatory pathways to enable the development and licensure of alternatives to antibiotics. This article, part of a two-part series, synthesizes and expands on the expert panel discussions regarding opportunities, challenges and needs for the development of vaccines that may reduce the need for use of antibiotics in animals; new approaches and potential solutions will be discussed in part 2 of this series. Vaccines are widely used to prevent infections in food animals. Various studies have demonstrated that their animal agricultural use can lead to significant reductions in antibiotic consumption, making them promising alternatives to antibiotics. To be widely used in food producing animals, vaccines have to be safe, effective, easy to use, and cost-effective. Many current vaccines fall short in one or more of these respects. Scientific advancements may allow many of these limitations to be overcome, but progress is funding-dependent. Research will have to be prioritized to ensure scarce public resources are dedicated to areas of potentially greatest impact first, and private investments into vaccine development constantly compete with other investment opportunities. Although vaccines have the potential to improve animal health, safeguard agricultural productivity, and reduce antibiotic consumption and resulting resistance risks, targeted research and development investments and concerted efforts by all affected are needed to realize that potential.


Assuntos
Gado/imunologia , Vacinas/uso terapêutico , Animais , Antibacterianos/uso terapêutico , Estados Unidos
3.
Vet Res ; 49(1): 70, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30060759

RESUMO

Vaccines and other alternative products are central to the future success of animal agriculture because they can help minimize the need for antibiotics by preventing and controlling infectious diseases in animal populations. To assess scientific advancements related to alternatives to antibiotics and provide actionable strategies to support their development, the United States Department of Agriculture, with support from the World Organisation for Animal Health, organized the second International Symposium on Alternatives to Antibiotics. It focused on six key areas: vaccines; microbial-derived products; non-nutritive phytochemicals; immune-related products; chemicals, enzymes, and innovative drugs; and regulatory pathways to enable the development and licensure of alternatives to antibiotics. This article, the second part in a two-part series, highlights new approaches and potential solutions for the development of vaccines as alternatives to antibiotics in food producing animals; opportunities, challenges and needs for the development of such vaccines are discussed in the first part of this series. As discussed in part 1 of this manuscript, many current vaccines fall short of ideal vaccines in one or more respects. Promising breakthroughs to overcome these limitations include new biotechnology techniques, new oral vaccine approaches, novel adjuvants, new delivery strategies based on bacterial spores, and live recombinant vectors; they also include new vaccination strategies in-ovo, and strategies that simultaneously protect against multiple pathogens. However, translating this research into commercial vaccines that effectively reduce the need for antibiotics will require close collaboration among stakeholders, for instance through public-private partnerships. Targeted research and development investments and concerted efforts by all affected are needed to realize the potential of vaccines to improve animal health, safeguard agricultural productivity, and reduce antibiotic consumption and resulting resistance risks.


Assuntos
Gado/imunologia , Vacinas/uso terapêutico , Criação de Animais Domésticos , Animais , Antibacterianos/uso terapêutico , Estados Unidos , Vacinação/métodos
4.
Vet Res ; 49(1): 66, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30060765

RESUMO

Due to the continuing global concerns involving antibiotic resistance, there is a need for scientific forums to assess advancements in the development of antimicrobials and their alternatives that might reduce development and spread of antibiotic resistance among bacterial pathogens. The objectives of the 2nd International Symposium on Alternatives to Antibiotics were to highlight promising research results and novel technologies that can provide alternatives to antibiotics for use in animal health and production, assess challenges associated with their authorization and commercialization for use, and provide actionable strategies to support their development. The session on microbial-derived products was directed at presenting novel technologies that included exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials, probiotics development via fecal microbiome transplants among monogastric production animals such as chickens and mining microbial sources such as bacteria or yeast to identify new antimicrobial compounds. Other research has included continuing development of antimicrobial peptides such as newly discovered bacteriocins as alternatives to antibiotics, use of bacteriophages accompanied by development of unique lytic proteins with specific cell-wall binding domains and novel approaches such as microbial-ecology guided discovery of anti-biofilm compounds discovered in marine environments. The symposium was held at the Headquarters of the World Organisation for Animal Health (OIE) in Paris, France during 12-15 December 2016.


Assuntos
Criação de Animais Domésticos , Anti-Infecciosos/análise , Descoberta de Drogas , Doenças dos Animais/prevenção & controle , Animais , Bacteriocinas , Bacteriófagos , Sistemas CRISPR-Cas , França , Gado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...